A microsomal GTPase is required for glycopeptide export from the mammalian endoplasmic reticulum.
نویسندگان
چکیده
Bidirectional transport of proteins via the Sec61p translocon across the endoplasmic reticulum (ER) membrane is a recognized component of the ER quality control machinery. Following translocation and engagement by the luminal quality control system, misfolded and unassembled proteins are exported from the ER lumen back to the cytosol for degradation by the proteasome. Additionally, other ER contents, including oligosaccharides, oligopeptides, and glycopeptides, are efficiently exported from mammalian and yeast systems, indicating that bidirectional transport across ER membranes is a general eukaryotic phenomenon. Glycopeptide and protein export from the ER in in vitro systems is both ATP- and cytosol-dependent. Using a well established system to study glycopeptide export and conventional liquid chromatography, we isolated a single polypeptide species of 23 kDa from rat liver cytosol that was capable of fully supporting glycopeptide export from rat microsomes in the presence of an ATP-regenerating system. The protein was identified by mass spectrometric sequence analysis as guanylate kinase (GK), a housekeeping enzyme critical in the regulation of cellular GTP levels. We confirmed the ability of GK to substitute for complete cytosol by reconstitution of glycopeptide export from rat liver microsomes using highly purified recombinant GK from Saccharomyces cerevisiae. Most significantly, we found that the GK (and hence the cytosolic component) requirement was fully bypassed by low micromolar concentrations of GDP or GTP. Similarly, export was inhibited by non-hydrolyzable analogues of GDP and GTP, indicating a requirement for GTP hydrolysis. Membrane integrity was fully maintained under assay conditions, as no ER luminal proteins were released. Competence for glycopeptide export was abolished by very mild protease treatment of microsomes, indicating the presence of an essential protein on the cytosolic face of the ER membrane. These data demonstrate that export of glycopeptide export is controlled by a microsomal GTPase and is independent of cytosolic protein factors.
منابع مشابه
Similar processes mediate glycopeptide export from the endoplasmic reticulum in mammalian cells and Saccharomyces cerevisiae.
Glycopeptides are transported from the lumen of the yeast endoplasmic reticulum (ER) to the cytosol and in contrast to secretory proteins do not enter ER-to-Golgi transport vesicles. In a cell-free system, this process is ATP- and cytosol-dependent. While yeast cytosol promotes the export of glycopeptides from mammalian ER in vitro, glycopeptide release cannot be detected in the presence of mam...
متن کاملThe protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane.
Peptides and misfolded secretory proteins are transported efficiently from the endoplasmic reticulum (ER) lumen to the cytosol, where the proteins are degraded by proteasomes. Protein export depends on Sec61p, the ribosome-binding core component of the protein translocation channel in the ER membrane. We found that prebinding of ribosomes abolished export of a glycopeptide from yeast microsomes...
متن کاملReconstitution of glycopeptide export in mixed detergent-solubilised and resealed microsomes depleted of lumenal components.
Export of macromolecules from the endoplasmic reticulum (ER) lumen into the cytosol is a major aspect of the quality control systems operating within the early secretory system. Glycopeptides are exported from the ER by an ATP- and GTP-dependent pathway, which shares many similarities to the protein export system. Significantly, for glycopeptides, there is no requirement for cytosolic factors, ...
متن کاملp125A exists as part of the mammalian Sec13/Sec31 COPII subcomplex to facilitate ER-Golgi transport
Coat protein II (COPII)-mediated export from the endoplasmic reticulum (ER) involves sequential recruitment of COPII complex components, including the Sar1 GTPase, the Sec23/Sec24 subcomplex, and the Sec13/Sec31 subcomplex. p125A was originally identified as a Sec23A-interacting protein. Here we demonstrate that p125A also interacts with the C-terminal region of Sec31A. The Sec31A-interacting d...
متن کاملPeptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity.
Several lines of evidence suggest that soluble peptide:N-glycanase (PNGase) is involved in the quality control system for newly synthesized glycoproteins in mammalian cells. Here we report the occurrence of a soluble PNGase activity in Saccharomyces cerevisiae. The enzyme, which was recovered in the cytosolic fraction, has a neutral pH optimum, and dithiothreitol is required for activity. All o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 43 شماره
صفحات -
تاریخ انتشار 2000